Exercise 42

Find the limit or show that it does not exist.

$$
\lim _{x \rightarrow \infty}[\ln (2+x)-\ln (1+x)]
$$

Solution

Use the property of logarithms that allows a difference to be written as a quotient. Then multiply the numerator and denominator by the reciprocal of the highest power of x in the denominator.

$$
\begin{aligned}
\lim _{x \rightarrow \infty}[\ln (2+x)-\ln (1+x)] & =\lim _{x \rightarrow \infty} \ln \frac{2+x}{1+x} \\
& =\lim _{x \rightarrow \infty} \ln \frac{2+x}{1+x} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \ln \frac{(2+x) \frac{1}{x}}{(1+x) \frac{1}{x}} \\
& =\lim _{x \rightarrow \infty} \ln \frac{\frac{2}{x}+1}{\frac{1}{x}+1} \\
& =\ln \frac{\lim _{x \rightarrow \infty}\left(\frac{2}{x}+1\right)}{\lim _{x \rightarrow \infty}\left(\frac{1}{x}+1\right)} \\
& =\ln \frac{\lim _{x \rightarrow \infty} \frac{2}{x}+\lim _{x \rightarrow \infty} 1}{\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} 1} \\
& =\ln \frac{0+1}{0+1} \\
& =\ln 1 \\
& =0
\end{aligned}
$$

